Combining Competition and Cooperation in Supervised Inductive
Learning

Cezary Z. Janikow
Department of Mathematics and Computer Science
University of Missouri at St. Louis
St. Louis, MO 63121
email: janikow@radom.umsl.edu

Abstract

Tools for automatic generation, verification,
and maintenance of knowledge bases become
more and more important with the amount of
widely available information growing. For su-
pervised concept learning in attribute—based
spaces, many approaches have been proposed
including the symbolic AQ and ID based al-
gorithms. These algorithms exhibit compet-
itive characteristics since either partial cov-
ers or the attributes compete for considera-
tion at any given moment. In this paper, we
describe a new full memory approach which
implements a very unique search mechanism
combining the competition with cooperation.
This approach uses the VL, language in a
framework utilizing operators of inductive
learning methodology and an inference en-
gine modeled upon genetic algorithms. We
also present some experiments indicating the
applicability of this approach to both quan-
titative and qualitative learning.

1 Preliminaries

Concept learning from examples, in attribute—based
description spaces, has been extensively studied. This
popularity is due to wide availability of data, ease of
compiling data from numerous databases, and relative
simplicity of the language required. This simplicity,
especially when further restricted to discrete domains
(either naturally such or artificially discretized), al-
lows for a number of methods to be applicable to the
problem. Accordingly, there is a number of approaches
ranging from statistical, connectionists and genetic al-
gorithms to decision trees and decision rules.

The objective of supervised concept learning is to

transform initial knowledge consisting of a set of pre-
classified event descriptions into output knowledge.
The purpose of such acquired knowledge is two—fold:
to predict classifications of new events and to extract
such knowledge, possibly for processing by other enti-
ties of a hybrid intelligent system (or a human). How-
ever, very few researchers attempted to measure the
latter properties of systems, mainly because very few
systems possess them. Generally, a system can ex-
hibit such properties only if the output knowledge is
expressed in a high level language; decision trees and
decision rules (ID and AQ) based systems fall into this
category.

The theory and methodology of inductive learning has
been proposed in (Michalski 1983). It provides a gen-
eral framework for inductive learning end describes
the operators needed for knowledge manipulation, in-
cluding rule drop, condition drop, reference extension,
reference restriction, interval closing, etc., in a rule—
based framework. For the attribute—based description
spaces, the VL, language is used. Having that, two
questions come to mind: what about directly imple-
menting the methodology as means for supervised con-
cept learning and empirically studying it.

The direct implementation is very difficult because
of huge search spaces of attribute-based descriptions
with relatively weak heuristics. For example, using ten
descriptive attributes with three values per domain, we
are faced with 7' number of different rules. Then, the
number of possible concept descriptions is 2710, or al-
most 10100000000 © Ope solution to this problem would
be to use hill-climbing techniques. However, the avail-
able heuristics, relying mostly on partial measures of
completeness and consistency, could easily lead to local
traps. Therefore, irrevocable strategies are quite inap-
plicable. Another solution would be to use some ten-
tative techniques. However, the huge search spaces re-
quire any such method to be extremely well informed,
or otherwise the explored database would grow un-

manageably fast. Again, the available heuristics are
not strong enough to provide such qualities. As to
the empirical studies, we would need to have a direct
implementation of the methodology in order to study
the inductive learning. Having such capabilities would
be very useful not only in justifying the methodology
itself, but also in understanding the learning process.

A system implementing these ideas would have some
additional desirable properties. It would express both
the input and the output knowledge in the same lan-
guage, V Ly in this case. Such a scenario allows for
both processing of hypothesis and incremental concept
formation (as does AQ). Moreover, with the amount
of automatically processed knowledge rapidly growing,
there is an emphasis on building systems whose per-
formance can be justified by understanding and val-
idating not only the generated knowledge, but also
the underlying mechanisms and processing principles
(Michalski 1986). Because this system would apply the
inductive learning mechanisms (operators), it would
exhibit exactly these characteristics.

Between the two prominent symbolic approaches, ID
uses processing mechanisms that are conceptually
quite distant from the problem level: it uses informa-
tion measure, and it iteratively specializes inconsistent
subspaces. AQ provides mechanisms at the conceptual
level of the problem (it processes descriptions), but it
does so by utilizing logic-based unions and intersec-
tions of V' Ly formulas that actually implement only
the extension against rule.

In the rest of the paper, we present the ideas leading
to the design and outline of the algorithm. Then, we
present few experimental results aimed at evaluating
the system’s qualities. Finally, we draw some conclu-
sions about future research.

2 DESIGN

In this section we first present our motivations and
ideas for this approach, and then we detail the algo-
rithm by describing the top level system components.

2.1 IDEAS

Our goal is to implement the inductive learning
methodology for attribute-based spaces. We decide to
use the V' Ly language as the choice for all the input,
the output, and the processing mechanisms. This uni-
formity could provide for incremental learning, ability
to process hypothesis (and, therefore, for applicability
for knowledge maintenance), and ease of understand-
ing of the knowledge reformulation process itself.

To deal with the huge search spaces, we must provide
as much heuristics as possible. Therefore, in addition
to the standard correctness measure of the proposed
descriptions (measured by completeness and consis-
tency) and some learning bias, we use the special oper-
ators of the inductive methodology and provide for ad-
justments to their applications in order to apply those
that are more likely to improve the descriptions (for
example, we make specializing operators more appli-
cable to inconsistent descriptions, etc.).

Finally, there is the question of the architecture it-
self. Because we are dealing with descriptions that are
being changed by means of operators, we propose to
use a production system framework. In other words,
we want to have three separate components: current
description(s), the operators, and an inference mech-
anism. Such a top-level separation would allow us
to easily apply similar ideas to other problems: only
the module containing the domain—specific knowledge
would have to be changed (see Figure 1).

Figure 1: The architecture.

Two new problems that arise in this context are: man-
ageability of the database size and selection of appro-
priate operator—state pairs for firing. The latter prob-
lem does not exist in a standard production system,
where the set of candidates is determined by matching
operator conditions. In our case, there are hardly any
conditions, the operators basically describe the actions
to be performed on descriptions. Moreover, we actu-
ally want to avoid any operators that would require
extensive pattern matching for being a candidate —
we do not use the inductive resolution rule. For the
others that require some matching, we devise special

efficient techniques. For example, we have an opera-
tor that uses an uncovered positive event et to build
a new rule: et ::> decision. However, this operator
does not require any pattern matching since each rule
knows, at any given moment, the set of incomplete
(and inconsistent) events (see Janikow 1991). With
these operators, we decide to use stochastic selection
for firing, with heuristically adjusted probabilities.

The size manageability problem is of a different na-
ture: due to the huge size of the search space, it is
impossible to retain all previously explored descrip-
tions, and therefore there is a possibility for the num-
ber of actually explored states, large to start with, to
become infinite because of loops. Under such condi-
tions, the performance of the system would depend
on the control mechanism selecting both the appropri-
ate operators and states for further exploration. Here,
heuristics play an important role. Between potentially
unmanageable database growth and a single state ex-
ploration, we decide to take an intermediate approach:
retain only a fixed number of states for further explo-
ration. The mechanism that decides the set of states to
be retained is again stochastic, but employs evaluation
based on problem specific heuristics.

With these ideas, a straightforward algorithm would
be one similar to bestFirstSearch, with the additional
mechanisms restricting the number of retained states.
Such an approach would provide a framework for
competition among different directions of exploration.
However, we decide to provide cooperative mecha-
nisms as well. They are to provide for information
exchange among the different search directions. To
implement these ideas, we decide to use control mech-
anisms of genetic algorithms, which exhibit the desired
properties.

Genetic algorithms (GAs) are adaptive methods of
searching solution spaces. They belong to the class of
probabilistic algorithms, with a unique search method
that is relatively insensitive to local traps — a re-
sult of multi-directional search with special mecha-
nisms for information formation and exchange. This
is achieved by maintaining a population of proposed
solutions (chromosomes) for a given problem. Each
solution is represented in a fixed alphabet (usually bi-
nary) with an established meaning. This population
iteratively undergoes a simulated evolution: relatively
good solutions produce offspring, which subsequently
replace the worse ones. The estimate of the qual-
ity of a solution is based on an evaluation function,
which plays the role of an environment. The existence
of the population provides for the superiority of ge-
netic algorithms over pure hill-climbing methods, for

at any time the GA provides for both exploitation of
the most promising solutions and exploration of the
search space.

Each iteration, called a reproduction cycle, is per-
formed in three steps. During the selection step a
new population is formed from stochastically best sam-
ples (with replacement). Then, some of the members
of the newly selected populations recombine and are
reevaluated. This mating process is based on the ap-
plication of two operators: mutation and crossover.
Mutation introduces random variability into the pop-
ulation, and crossover exchanges random pieces of two
chromosomes.

Goal descriptions of supervised learning are of un-
predictable length. To deal with this problem, there
are two different GA approaches. Michigan approach,
known as CS for classifier systems, uses populations
consisting of fixed length elements, and the solution is
represented by a set of chromosomes from the popula-
tion. Pitt approach, known as LS for learning systems,
represents an extension of the traditional fixed—length
chromosome approaches. Here, variable length chro-
mosomes are used to represent proposed solutions in-
dividually.

In the Pitt framework, which seems more suitable for
this class of problems, the two most important ap-
proaches come from Koza, who uses Lisp programs as
the underlying representation and provides operators
on Lisp trees (Koza 1989), and Spears with DeJong,
who use only the traditional operators of mutation and
crossover (Spears & DeJong 1990). In the CS frame-
work, which seems more suitable for action planning
than for concept learning (Liepins & Wang 1991), the
most important approaches come from Grefenstette
(Grefenstette 1991) and Booker (Booker 1989).

Our ideas are different from those, which start with
a genetic algorithm (either alone or embedded in a
classifier system) and attempt to apply it to super-
vised concept learning. In our case, we start with the
problem solving methodology (the inductive operators
and heuristics), and only then use genetic algorithms
to provide the necessary control mechanisms needed.
Although the idea of using the GA control to guide
problem—specific search is unique in nature, it should
be noted that some of the recent advances in CS ap-
plications to concept learning lean in the same direc-
tion — use of high level problem—specific operators
(Grefenstette 1991).

2.2 DATABASE

As we mentioned before, we attempt to directly imple-
ment the inductive learning methodology in the VL,
language. Because we want to work with proposed de-
scriptions as the entities on which to operate, we use
the LS approach. Then, a single state of our database
(a chromosome of a genetic algorithm) is a complete
potential solution — a set of rules. For simplicity of
presentation, we assume that we are dealing with sin-
gle concepts and that we are to learn only the descrip-
tion of the concept — the space not covered by this
description is assumed to represent the complement of
the concept.

This assumption provides for both architectural sim-
plicity and avoids the problem of multiple matches and
no matches normally occurring with rule-based sys-
tems. The architectural simplicity is based on the fact
that all rules of a single state (of the form complex ::>
decision) are associated with the same decision, which
does not have to be explicitly expressed. For a discus-
sion on possible relaxations of these assumptions, refer
to (Janikow 1991).

The database contains states, each of which is a po-
tentially feasible solution and can now be expressed as
a set of V L; complexes. The database size remains
fixed (as a parameter of the system). Initially, it must
be filled with some descriptions. Such an initializa-
tion might be totally random (as is normally the case
in genetic algorithms), or it might incorporate some
task—specific knowledge like initial hypotheses, back-
ground knowledge, or the positive events.

2.3 CONTROL

The control mechanism is similar to that of genetic
algorithms. Its main task is to retain the database
size fixed, determine the exploration directions, and
match states with operators for firing to generate new
states.

The first two objectives are accomplished by using the
standard GA selection mechanism: all current states
are evaluated using the correctness measures and some
learning criteria (from the domain-specific knowledge
module), and a new database is formed by stochastic
selection proportional to such evaluations. In other
words, the new database is likely to contain single or
even multiple copies of above—average states and to
exclude below—average states.

The last objective, matching the states with the op-
erators, is performed under supervision of the control
module but is actually done by the active operators of

the knowledge module.

2.4 DOMAIN-SPECIFIC KNOWLEDGE

This module contains all the problem—specific knowl-
edge about the problem, and it includes (see Figure
1) the inductive operators, heuristics used to evaluate
individual descriptions and their substructures, and
heuristics used to determine the application of these
operators.

2.4.1 Inductive Operators

The operators transform the descriptions to new (pos-
sibly better) states in the search space. Since the
system operates in the problem space, the operators
are those of the inductive methodology operating in
attribute-based spaces. These operators are those
competitive, since they change the states one at a time
in hope of producing better offspring. They are simi-
lar to mutation in classical genetic algorithms, yet they
differ substantially since the original idea of mutation
was just a random variation. We also provide some
operators that are to take advantage of the population
of descriptions and produce new states by combining
information contained in more than one (we used two)
states. These operators follow the idea of crossover in
genetic algorithms.

A more important classification of the operators can be
done with respect to the syntactic level of applicable
structures. Accordingly, we have condition, rule, and
rule set operators. Moreover, we also classify the oper-
ators according to the relationship between the origi-
nal state and the offspring. Here, we distinguish gener-
alizing, specializing, and independent operators, where
the latter are those whose action can be either of gen-
eralization or specialization, or whose action changes
only the description without affecting the coverage.

The operators currently used are listed in Table 1,
where “I”, G”, and “S” stand for independent, gen-
eralizing, and specializing. The newly introduced co-
operative operators are “rules exchange” and “rules
copy”, which exchange and copy rules between two de-
scriptions. The newly introduced “rule split” does not
change the description’s coverage, but rather change
the expression to possibly enable exploration in new
directions. The “new event” adds a new rule with
the complex being a previously uncovered positive
event. The “rules generalization” and “specialization”
replace selected rules of a description with their most
specific generalization and most general specification.
The “star” operator implements the star mechanism
used in AQ, which replaces an inconsistent rule with

Table 1: The currently used operators.

| Syntactical Level | Type | Name |

I rules exchange
G rules copy
Rule G new event
set G rules generalization
level S rules drop
S rules specialization
I rule split
Rule G condition drop
level G turning conj. into dis;j.
S condition introduce
S star
Condition G reference extension
level S reference restriction

the minimal set of rules that are consistent with re-
spect to a negative event. Finally, the “reference ex-
tension” and “restriction” change conditions (V' L; se-
lectors) differently for different types of domains. For
example, the former acts as interval closing when ap-
plied to linear domains.

2.4.2 Evaluation Heuristics

The evaluation function must reflect the learning cri-
teria. In supervised learning from examples, the cri-
teria normally include completeness, consistency, and
possibly complexity. In general, one may wish to
accommodate some additional criteria as cost of at-
tributes, length of descriptions, their generality, and
so on. Moreover, in a more general setting the current
knowledge could be evaluated by its average perfor-
mance as while monitoring an on-line system or guid-
ing an autonomous object, but we leave these consid-
eration for the future.

Combining multiple criteria in a single evaluation mea-
sure is very difficult and critical for the convergence
problem. In our case, we need to combine three such
values. We can ease this task by replacing the com-
pleteness and consistency measures with a standard
single measure of correctness. Then, we can combine
correctness and cost by the experimental formula:

evaluation = correctness-(1+ws-(1—cost))f

where w3 determines the influence of cost (which it-
self is normalized on [0, 1]), and f grows very slowly
on [0,1] as the population ages. The cost of a de-
scription is measured by its complexity, which com-
bines the number of rules and conditions as follows:
complexity = 2 - #rules + #conditions.

The above evaluation measure provides for a controlled
bias with respect to descriptions’ complexity. Correct-
ness is defined as the average of completeness and con-
sistency, whose definitions are presented in Table 2.
et and e~ are the number of positive/negative train-
ing events currently covered by a rule; eT and £~ are
the number of such events covered by a rule set; ET
and E~ are the total number of such events.

Table 2: Completeness and consistency measures.

| Structure type | Completeness | Consistency |
et /ET |1 —e JE-
et /et | 1—e e

A rule set
A rule

The primary reason for the cost accommodation is to
force differentiation between the same or similarly cov-
ering rule sets but of different complexity. The effect
of the very slowly raising f is that initially cost’s in-
fluence is small to promote deeper space exploration
and only increases at later stages in order to minimize
complexity.

2.4.3 Operator Application Heuristics

Each operator is given some initial probabilities from
two separate groups: application and selection prob-
abilities. The latter are fixed while the former adjust
appropriately to different V' L; structures. For exam-
ple, on the rule set level, the generalizing operators
increase their applicability to incomplete descriptions
and the specializing operators increase their applicabil-
ity to descriptions that are highly inconsistent. On the
rule level, the same happens based on the complete-
ness and consistency of the individual rules. Finally,
we do not apply these heuristics on the condition level
since it is difficult to decide which of the conditions
contribute to the incompleteness and inconsistency.

2.5 ALGORITHM

The algorithm uses the described components in a
framework that resembles the production system. A
single run is a series of iterations, each of each is ac-
complished by evaluating the current database, select-
ing a new one, and generating new states by means of
operators with dynamically adjusted application prob-
abilities. This iterative process continues until some
termination condition is met. Such a condition may
include time constraints, generation of a description
satisfying some goals, and so on.

3 EXPERIMENTS

In this section we present results of a few experi-
ments aimed at evaluating the system’s quantitative
and qualitative capabilities. These results should not
be treated in absolute terms since they were obtained
with a prototype implementation without any exten-
sive parameter tuning.

For the experiments, we decided to use two standard
data sets: DNF descriptions and multiplexers. Be-
cause of that, the results can be compared to those
of other systems. Learning random DNFs has be-
come a standard way of evaluating learning algo-
rithms. For our experiment, we used random one— and
two—disjunct descriptions, with each such a disjunct
being a conjunction of up to three selectors. All de-
scriptions were spanned by six three—valued attributes,
giving 35 = 729 possible events. The number of pos-
sible rules here was 75 = 117649 (with the internal
disjunction), which gives a total of 2117649 ~ 1039216
competing concept descriptions. As big number as it
seems for the system that nearly explicitly searches the
concept space, results show that the task was not so
difficult after all. An average learning time was about
ten seconds on a SPARC?2 station.

Multiplexers represent another widely used experimen-
tal data. Each multiplexer is a specific case of the more
general DNFs. For each integer k = 1,2,... there is a
multiplexer boolean function defined in the following
way: the function’s inputs are the k bits (called ad-
dresses), and there are exactly 2 outputs (called data
bits). Accordingly, we have multiplexer f3 for k = 1,
fe for k = 2, f1; for k = 3, etc.. The function of a
multiplexer is to activate the data bit whose address
is specified by the address bits. This function can be
expressed in VL; (Wilson 1987). The fg multiplexer
has relatively small event space (64) and search space
(~ 10%*?), and the cost of the solution (using the defi-
nition of section 2.4.2) is twenty. The fi; multiplexer
has quite larger event space (2048) and search space
(~ 10°°%49) but a relatively similar solution complex-
ity (forty eight). The average learning time for fg and
f11 was about ten seconds and twenty minutes, respec-
tively.

For all of our experiments we assumed the crisp con-
cept representation. In other words, a description rec-
ognizes an event only if the intersection of the descrip-
tion and the event is not empty. This follows our as-
sumption of learning only the concept description, and
treating its negation as the description of the negated
concept. All numerical results are averages of ten in-
dependent runs.

3.1 QUANTITATIVE RESULTS

Accuracy for one disjunct

T

;

100

e ONE conjunct per disjunct
..... two conjuncts per disjunct

,,,,, three conjuncts per disjunct

Accuracy for two disjuncts

100

Instances processed

10 100
Figure 2: Batch—incremental results on DNF data.

The reported DNF results (Figure 2) represent batch—
incremental learning curves using the same experiment
as that reported in (Spears & DeJong 1990) for ID5R
and GABIL: the quality measure after seeing n ex-
amples is defined as an average recognition of a sin-
gle unknown random event over the last ten experi-
ments (from n — 9 to n). Accordingly, the learning
curves are undefined for n < 10. The results indicate
that the learning accuracy decreases with the increas-
ing concept complexity, or that the system requires
more training data to achieve similar recognition rate
for more complex goal descriptions. These results and
observations are similar to those for ID5R and GABIL.

The multiplexers were tested in a batch mode: the
value of the learning curve at n% was computed as
the recognition rate on the unseen events after train-
ing with n% of the available events. The resulting
curves are shown in Figure 3a. When the number of
processed descriptions is considered, the fg learning is
similar to that reported in (Koza 1989). When the
accuracy is considered, the fi; multiplexer results are
similar to those of C4 (Quinlan 1988). The results
indicate good generalization properties of our system,
and they support the previous observation that the
system’s learning accuracy grows faster (with respect

to the percentage of training events) for simpler goal
concept descriptions — fi; has much lower complex-
ity with respect to its event and search spaces). In
(Janikow 1992) we show that these results can be im-
proved by controlling the learning bias.

3.2 QUALITATIVE RESULTS

Because our goal was to be able to both produce high
recognition rate and highly comprehensive output, we
performed few experiments to evaluate the latter qual-
ities as well. The only results we present here refer to
the multiplexer data.

(a) Accuracy

1 Lo00O0O0OO0OOOCQ GBS
o
° o
°°
s oo’ f
... 0000 6
occmfll

(b) Normalized cost

o % o .

1 2o 8
(.):agt:goo LI I I I

% training
events

50 100
Figure 3: Batch learning curves on the multiplexer.

Figure 3b represents the average size of the batch gen-
erated descriptions for both multiplexers and are nor-
malized with respect to the complexity of the sought
descriptions. Two interesting observations can be
stated. Firstly, for too few training events, the solu-
tions were far different from those sought, but for a suf-
ficient number of training events the system was gen-
erating descriptions very similar to the goals in terms
of complexity. For trainings producing a perfect ac-
curacy (see Figure 3a), the generated knowledge was
actually precisely the same as the goal concept — no
redundant descriptions were retained. Secondly, it is
interesting to observe that for too few training events,
the generated fg descriptions were too general and f1;
descriptions were too specific. This behavior is a result
of the learning bias introduced by the currently used

evaluation (section 2.4.2). These differences are also
visible in Figures 4 and 5, and are further studied in
(Janikow, 1992).

Completeness/consistency for fg

. Consistency
oo Completeness
200

Completeness/consistency for fi;

e) w
.wﬁ
@d"
4 iter
1700

Figure 4: Tracing the consistency and competeness of
the best database descriptions.

Figure 4 traces two individual runs, one for fg and one
for fi1, both of which resulted in finding the exact goal
descriptions. These traces illustrate the differences in
the system’s performance on these two problems. The
fe descriptions (this training with 80%) were being
built by producing first complete solutions, and then
specializing them for consistency. This observation
supports the previous one that these descriptions were
initially built too general. The fi; descriptions (this
training with 30%) were being built by rather pro-
ducing consistent solutions first and then generalizing
them. In (Janikow 1992) we show that this property
can be changed by adjusting the bias, which can often
lead to improving both learning time and accuracy. Fi-
nally, the reasons for the higher here time complexity
for the latter data can be explained in Figure 5, where
we trace the complexity of the same currently best
descriptions. Clearly, the amount of work necessary
for the fi; multiplexer was quite larger because of the
larger number of rules being processed simultaneously.

Complexity of the best rule set.

. e [o

oo f11

iter
200/1700

Figure 5: Tracing the cost of the best database de-
scription.

4 SUMMARY

We described here a full-memory system for learning
concept descriptions from examples of attribute—based
spaces. This system is designed following the ideas
of production systems. It uses the operators of the
inductive learning methodology. To control the search
process, we used the ideas of genetic algorithms: the
size of the database remains fixed by applying selection
that favors better intermediate descriptions, and the
operator applications are stochastic. We also included
few additional operators providing cooperation among
different search directions. The system operates in the
V L; rule-based language.

Application of the inductive operators and the
high level language allow for utilization of powerful
problem-—specific heuristics. Application of the same
input and output language should allow for incremen-
tal learning and for ability to process initial hypothe-
ses. These qualities will be tested in the future. Pro-
cessing mechanisms defined at the same level make it
easier to justify the process of knowledge reformula-
tion. The system achieves not only high recognition
rates, but it also produces knowledge of low complex-
ity.

Much work remains to be done here. The most impor-
tant are methods of dealing with the huge parameter
space, controlling the learning bias, and relaxing the
current restrictions and assumptions.

References

Booker, L.B. (1989). “Triggered Rule Discovery in
Classifier System”. In J.D. Schaffer, ed., Proceed-
ings of the Third International Conference on Ge-
netic Algorithms, Morgan Kaufmann.

Spears, W.M. & DeJong, K.A. (1990). “Using Ge-
netic Algorithms for Supervised Concept Learn-

ing”. In J.J. Grefenstette, ed., Proceedings of the
Second International Conference on Tools for Al
IEEE Computer Society Press.

Grefenstette, J. (1991). “Lamarkian Learning in
Multi-agent Environments”. In R.K. Belew and
L.B. Booker,eds., Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms, Mor-
gan Kaufmann.

Liepins, G.E. & Wang, L.A. (1991). “Classifier Sys-
tem Learning of Boolean Concepts”. In R.K.
Belew and L.B. Booker,eds., Proceedings of the
Fourth International Conference on Genetic Al-
gorithms, Morgan Kaufmann,

Janikow, C.Z. (1991). Inductive Learning from At-
tribute Based Examples: A Knowledge—Intensive
Genetic Algorithm Approach. Doctoral Disserta-
tion, University of North Carolina at Chapel Hill,
1991.

Janikow, C.Z. (1992). “Some Experiments with a
Stochastic Production System”. In ARTIFICIAL
INTELLIGENCE: Methodologies, Systems, Ap-
plications, Vol. 5, North—Holland, to appear.

Koza, J.R. (1989). “Hierarchical Genetic Algo-
rithms Operating on Populations of Computer
Programs”. In Proceedings of the International
Joint Conference on Artificial Intelligence.

Michalski, R.S. (1983). “Theory and Methodology of
Inductive Learning”. In R.S. Michalski, J.G. Car-
bonell and T.M. Mitchell, eds., Machine Learning
I, Morgan Kaufmann.

Michalski, R.S. (1986). “Understanding the Nature
of Learning”. In R.S. Michalski, J.G. Carbonell
and T.M. Mitchell, eds., Machine Learning II,
Morgan Kaufmann.

Quinlan, J.R. (1988). “An Empirical Comparison of
Genetic and Decision—tree Classifiers”. In Pro-
ceedings of the Fifth International Conference on
Machine Learning, Morgan Kaufmann.

Wilson, S. (1987). “Classifier Systems and the Ani-
mat Problem”. In Machine Learning, 3:2.

